
1. CCIPReader.sol

2. Forward Resolution 

UR.sol

3. Reverse Resolution 

ReverseUR.sol

4. Wrapped Resolution 

HumanUR.sol



CCIPReader.sol

When a CCIP-Read function is called in 
the EVM, the call flow bifurcates, 

either: 
 

(1) it returns immediately  
or (2) continues after an 

OffchainLookup revert is processed.

https://github.com/unruggable-labs/CCIPReader.sol



CCIPReader.sol
https://github.com/unruggable-labs/CCIPReader.sol

Similar to staticcall(), except: 





Demo: Collatz Sequence
https://github.com/unruggable-labs/CCIPReader.sol

list()
Collatz Wrapper Collatz

Offchain 
Server

colla
tz()

list(3) = [3, 10, 5, 16, 8, 4, 2, 1]



UR.sol
https://github.com/unruggable-labs/unruggable-resolve

1. Rewrite UniversalResolver using 
CCIPReader.sol


2. Support resolve(name, multicall(…)) 

3. Standardize an Interface 

4. Imagine as a “lego” that encapsulates 
forward-resolution on-chain



UR.sol
https://github.com/unruggable-labs/unruggable-resolve



UR.sol
https://github.com/unruggable-labs/unruggable-resolve

1. Less than 200 lines of code


2. Super-easy to understand


3. Supports “intelligent” multicall


4. Designed to be wrapped



ReverseUR.sol
https://github.com/unruggable-labs/unruggable-resolve

1. Implement Reverse Resolution using UR


 

2. Standardize an Interface 

3. Imagine as a “lego” that encapsulates 
reverse-resolution on-chain

5105.addr.reverse raffy.eth 0x5105
name() addr()



ReverseUR.sol
https://github.com/unruggable-labs/unruggable-resolve

100 lines of code, very simple, uses multicall



HumanUR.sol (WIP)
https://github.com/unruggable-labs/unruggable-resolve

1. Normalization / DNS-Encoding


2. Address Coders


3. Easy to Call



WrappedUR.sol
https://github.com/unruggable-labs/unruggable-resolve



UniversalResolver.sol
https://github.com/unruggable-labs/unruggable-resolve

1. Reimplement ENS UniversalResolver


2. Reimplement ENS UniversalResolver (v3)


3. ABI-equivalent


4. ~150 lines of code


